
Eur. Phys. J. B 54, 131–136 (2006)
DOI: 10.1140/epjb/e2006-00417-1 THE EUROPEAN

PHYSICAL JOURNAL B

Vectorial representation of single- and multi-domain protein folds

F. Teichert and M. Portoa

Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstr. 6-8, 64289 Darmstadt, Germany

Received 13 April 2006 / Received in final form 9 October 2006
Published online 8 December 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. We discuss a vectorial representation applicable to both single- and multi-domain protein folds.
This generalized vectorial representation is essentially identical to the previously described vectorial rep-
resentation for single-domain proteins folds when applied to these, but allows for the additional consistent
representation of multi-domain structures. We show that the generalized vectorial representation enables
the accurate analytical prediction of site-specific amino acid distributions for both single- and multi-domain
protein folds, similarly as the previously described vectorial representation does for single-domain folds.

PACS. 87.14.Ee Proteins – 87.15.Cc Folding and sequence analysis – 87.15.Aa Theory and modeling;
computer simulation

1 Introduction

The question of how to properly represent protein se-
quences and structures has concerned researchers since
the first sequences and structures have been determined.
It has been realized very early that protein sequences can
be represented by various profiles, the most prominent one
being the amino acids’ hydrophobicity [1,2], but also using
other physical and chemical characteristics such as charge
and secondary structure propensities. Structural informa-
tion, on the other hand, can also be reduced to profiles
describing structural properties of the amino acids in the
fold [3], prominently secondary structure and solvent ac-
cessibility [4]. It has been shown that the hydrophobicity
profile of a sequence is correlated with the solvent acces-
sibility profile of the native structure [5], indicating that
such sequence and structure profiles are interrelated [6,7].

Recently, a vectorial representation of single-domain
globular protein folds has been introduced [8], which con-
sists of a real positive number for each amino acid and is
derived from the structure’s contact map (note that be-
sides such static analysis of the contact network, it might
be interesting to resort to a dynamical network analysis
similarly as in Ref. [9]). This vectorial representation was
found to be related to the sequences attaining that fold
via their hydrophobicity profile [10]. Based on this obser-
vation, an accurate analytical prediction of site-specific
amino acid distributions for single-domain structures us-
ing this vectorial representation has been obtained [11–13].
Interestingly, it has also been shown that this structural
profile is furthermore equivalent to the protein structure
in the sense that the structure’s contact matrix can be effi-
ciently recovered from the sole knowledge of the structural
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profile [8], from which the full three-dimensional structure
can be determined [14].

One drawback of the vectorial representation intro-
duced in reference [8] is that multi-domain protein folds
cannot be represented in the sense that, for multi-domain
folds, the vectorial representation contains only informa-
tion on the largest or most compact domain, but not on
the smaller or less compact ones. Hence, there is the need
to generalize the present vectorial representation to allow
for the consistent description of both single- and multi-
domain protein folds. Such a generalized vectorial rep-
resentation should fulfill two central conditions: (i) the
generalized vectorial representation should give the same
vectorial representation as the original definition when
applied to single-domain folds; and (ii) the generalized
vectorial representation should have the same predictive
power for both single- and multi-domain protein folds the
original definition has for single-domain proteins, for in-
stance concerning site-specific amino acid distributions.
For a vectorial representation being furthermore equiv-
alent to the protein structure, a third condition has to
be fulfilled; namely (iii) that it allows to recover the full
three-dimensional structure, either directly or via recon-
struction of the contact matrix.

In the following, we describe a generalized vectorial
representation that fulfills condition (i) in the sense that
the previous and the generalized vectorial representation
for the set of 404 single-domain protein folds studied in
reference [11] have a mean correlation coefficient of 0.96
(so that they are not fully but almost identical) [15]. We
furthermore show that condition (ii) is fulfilled, and that
the generalized vectorial representation has the same pre-
dictive power for both single- and multi-domain protein
folds concerning site-specific amino acid distributions the
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original definition has for single-domain proteins. Whether
the additional condition (iii) for an equivalent representa-
tion is fulfilled as well has not been ascertained yet and
is subject to ongoing research, results will be discussed in
a separate publication. However, the compliance of con-
dition (iii) does not hinder immediate application of the
generalized vectorial representation, for instance concern-
ing the abovementioned prediction of site-specific amino
acid distributions and their use in phylogenetics, which is
the central goal of this work.

The paper is organized as follows: in Section 2, we
define the generalized structural profile, analyze the re-
sulting profiles for a large representative set of single- and
multi-domain structures, and show that condition (i) is
fulfilled. The predictive power of the generalized struc-
tural profile is exemplified in Section 3, where we predict
the site-specific amino acid distribution for the same large
representative set of single- and multi-domain structures,
in very good agreement with empirically observed distri-
butions, and hence show that condition (ii) is met. The
conclusions are summarized in Section 4.

2 Definition of the structural profile

The contact matrix C of a protein structure of N amino
acids is a binary symmetric matrix of size N × N , with
elements Cij = 1 if amino acids at positions i and j are in
contact, and 0 otherwise [16]. Only residues separated by
at least three positions along the sequence are considered
in contact, so that Cij = 0 for all i and j with |i− j| < 3.
Two residues are considered to be in contact if any two
of their heavy atoms (excluding hydrogen) are closer than
4.5 Å in space. Therefore, the contact condition depends
on the size of the amino acids at positions i and j. This
yields the standard definition of the contact matrix C,

Cij =

⎧
⎪⎨

⎪⎩

0 for |i − j| < 3
1 if i and j are in contact
0 if i and j are not in contact.

(1)

Based on this definition, the vectorial representation of
protein folds has been defined as the eigenvector c of the
largest eigenvalue of C (as C is a real symmetric matrix,
it has N real eigenvalues) [8]. This principal eigenvector
c maximizes the quadratic form

∑
ij Cij ci cj under the

constraint of
∑

i c2
i = const. Since all elements of C are

positive or zero, it follows that all components ci have the
same sign or are zero, of which the positive sign is cho-
sen by convention. It should be noted that the principal
eigenvector, in case the contact matrix represents a multi-
domain protein, contains only information on the largest
or most compact domain (a property that has already
been used to identify structural domains [17]). For such
multi-domain proteins, the principal eigenvector contains
non-vanishing components only for the residues belonging
to the largest or most-compact domain, and contains zero
or vanishing components for the residues not belonging to
it. This property limits the applicability of this vectorial
representation to single-domain proteins.

Fig. 1. Histogram P (ui) of the components ui for the dataset
NR50select. The points show the numerical data, and the line
displays the fit, equation (3), with a = 13, b = 0.32, c = 0.47,
and d = 0.115.

To develop a vectorial representation applicable to
both single- and multi-domain protein folds, we start with
a slightly modified real symmetric N×N matrix C̃, which
is defined as

C̃ij =

⎧
⎪⎨

⎪⎩

0 for |i − j| < 3
1 if i and j are in contact
ε(N) if i and j are not in contact,

(2)

applying the same definition of contact as above. The dif-
ference between C̃, equation (2), and C, equation (1), is in
the elements when i and j are not in contact and |i−j| ≥ 3.
We replace these 0’s in equation (1) by a finite length-
dependent value ε(N) = min{εmax, ε0/[log(N) − ε1]},
where we use εmax = 0.01, ε0 = 0.02, and ε1 = 2 as
parameters. They are chosen such that the value ε(N)
is the smallest value for a given sequence length N
yielding an eigenvector of the largest eigenvalue which
is non-vanishing for all sites and approximately homo-
geneous over the domains. From the matrix C̃, we ob-
tain the eigenvector c̃ of the largest eigenvalue. All com-
ponents of c̃i have the same sign, which we choose to
be positive. It is clear that c̃ maximizes the quadratic
form

∑
ij C̃ij c̃i c̃j , and hence approximately maximizes

∑
ij Cij c̃i c̃j, for

∑
i c̃2

i = const.
In the following, we focus on the dataset NR50 [18],

which is a subset of the structures available in the Pro-
tein Databank (PDB) [19], where structures of similar se-
quences have been clustered and ranked. Of this set, we
use all structures of rank 1, yielding a representative set
of known structures. We exclude from this set of rank 1
structures only those that are clearly not globular, which
is verified by enforcing that the number of contacts per
residue Nc/N is Nc/N ≥ 2.63 + 5.85N−1/3, where the
factor N−1/3 comes from the surface to volume ratio and
coefficients are chosen such that essentially all globular
structures are correctly identified and non-globular struc-
tures are excluded [20]. The reason for this exclusion is
that, in most cases, non-globular structures do not attain
a well-defined folded structure and are hence already prob-
lematic in the contact matrix representation. We remain
with 7195 single- and multi-domain globular structures
of lengths between 25 and 1491 amino acids, which we
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refer to in the following as dataset NR50select. For each
structure in the set, we construct the matrix C̃ accord-
ing to equation (2), from which we obtain the principal
eigenvector c̃. We normalize the vector components as
ui ≡ c̃i/

〈
c̃
〉
, where

〈
c̃
〉

= N−1
∑

i c̃i indicates the aver-
age over the components of the given structure, so that
N−1

∑
i ui = 1 for each structure, independent of the se-

quence length N . The histogram of the components for
NR50select is shown in Figure 1. This distribution P (ui)
is very well fitted by a functional form

P (ui) = (1 − exp[−a u2
i ]) exp[−b (ui + c)2 + d] (3)

with parameters a = 13, b = 0.32, c = 0.47, and d = 0.115.
As the distribution of components of the previous vec-

torial representation for single-domain proteins has an ex-
ponential shape, we transform the components ui to com-
ponents vi which shall obey an exponential distribution.
We decompose this transformation into two transforma-
tions, of which the first transformation F transforms the
components ui to the uniform distribution in the unit in-
terval,

F(ui) =
∫ ui

0

(1 − exp
[−ax2

]
) exp

[−b (x + c)2 + d
]

dx

=
√

π

2
exp(d)

⎛

⎝
erf

(√
b(ui + c)

)
− erf

(√
bc

)

√
b

− exp
[

− abc2

a + b

] erf
(

aui+b(ui+c)√
a+b

)
− erf

(
bc√
a+b

)

√
a + b

⎞

⎠ (4)

with erf being the error function. With the fitted param-
eters (see Fig. 1), one gets with three digits accuracy (re-
flecting the accuracy of the fitted parameters)

F(ui) = − 0.503 + 1.76 erf(0.266 + 0.566 ui)
− 0.254 erf(0.0412 + 3.65 ui). (5)

Afterwards, we apply a second (inverse) transformation
G−1 from the uniform distribution in the unit interval to
the intended form

P (vi) =

{
α exp[−vi/λ] + β for vi ≤ vmax

0 for vi > vmax.
(6)

The transformation G from the distribution P (vi), equa-
tion (6), to the uniform distribution in the unit interval is
given by

G(vi) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ vi

0

α exp[−x/λ] + β dx = α λ (1 − exp[−vi/λ])

+β vi for vi ≤ vmax

α λ (1−exp[−vmax/λ])+β vmax for vi > vmax.

(7)
From this definition, the transformation G−1 from the uni-
form distribution in the unit interval to the desired dis-
tribution of the components vi, equation (6), follows by

Fig. 2. Histogram P (vi) of the components vi for the dataset
NR50select. The points show the numerical data, and the line
the desired functional form equation (6) with α = 0.733, β =
0.283, and λ = 0.4.

inversion. Even though G−1 can be obtained from equa-
tion (7) in closed form, we do not show the very lengthy
expression here. Instead, we directly proceed to the form of
G−1 that one obtains for the numerical values α = 0.733,
β = 0.283, and λ = 0.4, with three digits accuracy,

G−1(y) = −1.04 + 3.53y + 0.4 prodlog(34.5 exp[−8.83y]),
(8)

where prodlog is the product log or Lambert’s W function,
so that prodlog(z) is the principal solution for w of z =
w exp(w).

The final value vi of the structural profile at residue i
is then obtained as vi ≡ ṽi/

〈
ṽ
〉

with ṽi ≡ G−1(F(c̃i/
〈
c̃
〉
)),

where c̃i is the ith component of the eigenvector of the
largest eigenvalue of C̃, and

〈
c̃
〉

and
〈
ṽ
〉

are the averages of
the c̃i and ṽi, respectively, over the given structure. Hence,
one has N−1

∑
i vi = 1 for each structure, independent of

the sequence length N . The numerically obtained distri-
bution P (vi) is shown in Figure 2, which follows very well
the desired form equation (6), with the exception of the
smoothened edge at vmax, which is due to enforcing the
normalization N−1

∑
i vi = 1.

The correlation coefficient between the original defini-
tion of the structural profile (based on diagonalizing the
contact matrix in Eq. (1)) and the new definition v is 0.96
for the set of 404 single-domain globular structures stud-
ied in reference [11], so that both definitions are essentially
identical for single-domain globular folds [15]. Hence, the
generalized structural profile fulfills condition (i) imposed
in the Introduction.

3 Properties of the structural profile

In the following, we apply the generalized structural pro-
file defined above to derive site-specific amino acid distri-
butions for the single- and multi-domain structures con-
tained in the dataset NR50select. This shall exemplify
that the generalized structural profile has the same predic-
tive power for single- and multi-domain folds the previous
structural profile has for single-domain folds. We follow
below the discussion in reference [11].
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To derive site-specific amino acid distributions, we first
define the hydrophobicity profile h = h(A) of a given se-
quence A, where the profile components hi are given by
hi = h(Ai), and h(a) is the so-called interactivity of amino
acid a [10]. The 20 elements h(a), one for each amino acid,
are given by the components of the eigenvector for the in
absolute value largest eigenvalue ε1 < 0 of the contact
interaction matrix U derived in reference [21]. The val-
ues h(a) are strongly correlated with experimentally ob-
served hydrophobicities [10], for instance with the octanol
scale derived by Fauchere and Pliska [22]. This is a gen-
eral property of contact interaction matrices [23,24], as
hydrophobicity is one of the major contributions to pro-
tein energetics. The parameters h(a), however, should not
be interpreted as hydrophobicities in the strict biochemi-
cal sense, since they also take into account other kinds of
interactions. For instance, aromatic amino acids have very
large h(a), in part due to the strength of the interactions
between aromatic rings.

The reasoning to define a hydrophobicity profile h(A)
for a sequence A becomes clear when looking on the free
energy of a sequence A in a structure given by contact
matrix C, which in pair-contact-approximation is given
by

∑
i<j Cij U(Ai, Aj). This free energy can be well ap-

proximated by ε1
∑

i<j Cij h(Ai)h(Aj), since the compo-
nents U(a, b) and h(a)h(b) are strongly correlated, dis-
playing a correlation coefficient of 0.83 for the matrix U
derived in reference [21]. As, on the one hand, wild-type se-
quences have low free energy in their native configuration
so that

∑
i<j Cij h(Ai)h(Aj) is large (note that ε1 < 0)

and, on the other hand, v is an approximation for the
vector that maximizes the quadratic form

∑
ij Cij vi vj for

∑
i v2

i = const, it is not surprising that the hydrophobicity
profile h is correlated with the structural profile v. The
mean correlation coefficient for the dataset NR50select is
0.44, which is similar to the value obtained for the previ-
ous vectorial representation when analyzing single-domain
folds only [11,15]. Note that despite the correlation coef-
ficient being small, it is significant, as the probability to
observe such correlation by chance is 10−13 for a structure
of 250 residues, to mention one example.

For a given structure, one can define an optimal hy-
drophobicity profile hopt, for fixed mean and mean square
of the hydrophobicity profile

〈
h
〉

and
〈
h2

〉
, being the av-

erages of h(Ai) and h2(Ai), respectively, over the given
structure. These values need to be fixed to constrain the
energy gap [10,11]. Based on the discussion above, it
is clear that this optimal hydrophobicity profile hopt is
strongly correlated with the structural profile v. The op-
timal sequence displaying the hydrophobicity profile hopt

is very unlikely to be realized during evolution. However,
all viable sequences have to be sufficiently stable, which
implies that their hydrophobicity profile has to have a
large correlation coefficient with the optimal hydropho-
bicity profile hopt. Thus, the hydrophobicity profiles of
protein sequences are expected to move around the op-
timal hydrophobicity profile in the cause of evolution, so
that the evolutionary average

[
h
]

evol
of the hydrophobic-

ity profile almost coincides with the optimal hydrophobic-

ity profile hopt, which is in fact observed in simulations of
protein evolution [10]. Consequently, the evolutionary av-
erage

[
h
]

evol
is, in turn, strongly correlated with the struc-

tural profile v. We follow the approach of reference [11]
and assume, for a given fold, a correlation coefficient of 1
between

[
h
]

evol
and v, yielding

[
hi

]

evol
≡

∑

{a}
πi(a)h(a) = A (vi − 1) + B, (9)

where πi(a) is the probability to observe amino acid a at
site i, the sum over {a} is taken over all amino acids, and

A =

√
√
√
√

〈[
h
]2

evol

〉 − 〈[
h
]

evol

〉2

〈
v2

〉 − 1
and B =

〈[
h
]

evol

〉
. (10)

Equations (9, 10) involve two different kinds of aver-
ages: The angular brackets

〈
f
〉

again denote the aver-
age over the N positions of the protein, whereas square
brackets denote position-specific evolutionary averages,[
fi

]

evol
=

∑
{a} πi(a) f(a), and consequently

〈[
f
]

evol

〉
=

N−1
∑

i

∑
{a} πi(a) f(a). As A and B are given by the

mean and mean square of the given profiles’ components
via equation (10), the above ansatz does not contain any
free parameter.

We proceed by assuming that the site-specific distribu-
tions πi(a) are the distributions of maximum entropy com-
patible with the above conditions, so that the only con-
straint is given by the average,

∑
{a} πi(a)h(a) =

[
hi

]

evol
.

The solution to this problem is well-known and is given
by exponential or Boltzmann distributions,

πi(a) =
exp[−βi h(a)]

∑
{a′} exp[−βi h(a′)]

, (11)

with the constraint, equation (9),
∑

{a}
exp[−βi h(a)] [h(a) − A (vi − 1) − B] = 0. (12)

Note that equation (11) can be generalized by in-
cluding weights w(a) for each amino acids, πi(a) ∝
w(a) exp[−βi h(a)], which reflect organization of the ge-
netic code, mutational bias, etc., as discussed in detail in
references [12,13]. However, as the focus here is the gen-
eralized structural profile, we remain with equation (11),
following the discussion of reference [11].

The Boltzmann parameter βi (which can be both neg-
ative and positive) can be calculated in an implicit form
by rewriting equation (12) as

vi = 1 + A−1

[∑
{a} h(a) exp[−βi h(a)]
∑

{a} exp[−βi h(a)]
− B

]

, (13)

giving vi as a function of βi, without any free parameter.
Hence, for a given fold defined by the structural profile
v, the Boltzmann parameter βi can be obtained for each
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Fig. 3. Amino acid probability distributions, displaying the
Boltzmann parameter βvi as a function of the component vi

of the vectorial representation. Shown are the numerically ob-
tained values for the dataset NR50select (full circles) and for
comparison the numerically obtained values for a dataset of
404 single-domain globular folds using the original definition
of the structural profile (open circles, replotted from Ref. [11]
using vi = ci/

〈
c
〉
). The lines shown are the prediction for the

dataset NR50select and for the dataset of reference [11] (the
dashed part indicates the ‘forbidden’ regime vi < 0), which
essentially coincide.

site i for given mean and mean square of the hydropho-
bicity,

〈
h
〉

and
〈
h2

〉
. The latter two quantities are not

determined by the structure, but by the mutation and se-
lection processes (for a detailed discussion of this issue see
reference [13]). In the following, we simply obtain

〈
h
〉

and
〈
h2

〉
from the analyzed sequences.

To analyze a whole set of structures, it is convenient
to perform a structural alignment in the sense that one
bins together similar values of vi. This is possible as the
Boltzmann parameter βi is solely given by the value vi

for fixed mean and mean square hydrophobicity. Hence,
we rewrite equation (13) as an equation for βvi for each
whole bin characterized by vi,

vi = 1 + Ã−1

[∑
{a} h(a) exp[−βvi h(a)]
∑

{a} exp[−βvi h(a)]
− B̃

]

, (14)

with parameters Ã and B̃ now given by

Ã =

√
√
√
√

〈[
h
]2
set

〉

vi
− 〈[

h
]

set

〉2

vi[〈
v2

〉]

set
− 1

and B̃ =
〈[

h
]

set

〉

vi
. (15)

The square brackets
[
h
]

set
then denote, instead of the

evolutionary average over a protein family, the average
over all positions with fixed vi, even belonging to different
structures, whereas angular brackets,

〈[
h
]

set

〉

vi
, denote

the average over all values of vi, weighted by the number
of entries in the bin. The denominator

[〈
v2

〉]

set
indicates

the quantity
〈
v2

〉
, obtained for each structure individu-

ally, averaged over the whole set of structures. As Ã and
B̃ are given by equation (15), which in turn can be calcu-
lated for a given set of sequence/structure pairs, the above
ansatz does not contain any free parameter.

To obtain the numerical approximation for the dis-
tributions πvi(a) from the dataset NR50select, we count

Fig. 4. Amino acid probability distributions, displaying the
Boltzmann parameter βvi as a function of the component vi of
the vectorial representation. Shown are the numerically ob-
tained values for the full dataset NR50select (full circles),
as well as separately for the two disjoint subsets containing
only single-domain (open squares) and only multi-domain folds
(open triangles). The line shown is the prediction for the full
dataset NR50select (the dashed part indicates the ‘forbidden’
regime vi < 0).

the number of occurrences of each amino acids as a func-
tion of vi, where we use a bin size of 0.05 for vi ≤ 2.5
and a bin size of 0.1 for vi > 2.5. Then, for each bin
of vi, we fit the observed distributions πvi(a) with an
exponential function of the hydrophobicity parameters,
πvi(a) ∝ exp[−βvi h(a)]. The values of βvi obtained by
this fit are plotted in Figure 3 and compared with the an-
alytical prediction given by equations (14, 15), yielding a
very good agreement without any adjustable parameter.
The data shown in reference [11], based on the analysis
of single-domain folds using the original definition of the
structural profile, is displayed for comparison. As it can
be seen in Figure 3, the data obtained by the analysis of
the dataset NR50select using the generalized structural
profile is in very good agreement with the data obtained
in reference [11]. Furthermore, the analytical prediction,
equations (14, 15), for both datasets essentially coincide
and agree very well with the numerical data. Hence, the
generalized structural profile allows for the accurate pre-
diction of site-specific amino acid distributions for both
single- and multi-domain folds, similarly as the previous
structural profile does for single-domain folds.

To verify whether there is a difference between single-
and multi-domain folds concerning the quality of predic-
tion, we split the set of 7195 structures of the dataset
NR50select into two disjoint subsets, one containing 4330
single-domain folds and one containing 2865 multi-domain
folds. The discrimination is done using the Protein Do-
main Parser (PDP) [25]. The above analysis is repeated
for each of the two subsets separately, yielding the val-
ues of βvi individually for single- and multi-domain folds
in the dataset NR50select. The results are shown in Fig-
ure 4 and compared with the results of the whole dataset
NR50select. There is a very good agreement between
single- and multi-domain folds, indicating that the under-
lying generalized structural profile describes single- and
multi-domain folds in an analogous manner. These two
comparisons, one with the previous results obtained using



136 The European Physical Journal B

the previous definition of the structural profile (Fig. 3),
and one between single- and multi-domain folds (Fig. 4),
exemplify that the generalized structural profile has the
same predictive power for both single- and multi-domain
folds the original definition has for single-domain folds,
and hence fulfills condition (ii) imposed in the Introduc-
tion.

The prediction in equations (14, 15) can be further im-
proved by considering the effects of mutation and selection
in more detail as done in reference [13] for single-domain
structures using the original definition of the structural
profile. Such treatment allows to derive site-specific amino
acid distributions taking into account a given mutational
model. This generalized ansatz including both mutation
and selection can be solved on a mean-field level, so that
one obtains a protein evolution model with independent
sites that reproduces site-specific amino acid distribu-
tions [13]. The generalized structural profile defined here
is directly applicable within this more generalized context.

4 Conclusions

We introduce a generalized structural profile applicable
to both single- and multi-domain proteins. This general-
ized structural profile is essentially identical to the origi-
nal definition for single-domain proteins when applied to
these (correlation coefficient of 0.96 for the set of 404 pro-
teins discussed in Ref. [11]). Furthermore, this generalized
structural profile has the same predictive power for single-
and multi-domain protein folds the original definition has
for single-domain proteins. This is exemplified by predict-
ing the site-specific amino acid distributions of the dataset
NR50select, which is a representative set of known single-
and multi-domain structures. Such site-specific amino acid
distributions are very helpful for many applications, for
instance in phylogenetics, as they allow to derive a pro-
tein evolution model with independent sites that repro-
duces site-specific amino acid distributions [13]. To facili-
tate such applications, a web site has been set up [26].

Inspiring discussions with Ugo Bastolla, H. Eduardo Roman,
and Michele Vendruscolo, as well as generous financial support
by the Deutsche Forschungsgemeinschaft (PO 1025/1-1) are
gratefully acknowledged.
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